
J .  Fluid Mech. (1976), vol. 7 5 ,  part 1, pp .  113-148 

Printed in Great Britain 
113 

Numerical simulation of three-dimensional Bknard 
convection in air 

By FRANK B. LIPPS 
Geophysical Fluid Dynamics Laboratory/NOAA, Princeton University, 

Princeton, New Jersey 08540 

(Received 14 August 1974) 

A numerical model is developed to simulate three-dimensional BQnard convec- 
tion. This model is used to investigate thermal convection in air for Rayleigh 
numbers between 4000 and 25000. According to experiments, this range of 
Rayleigh numbers in air covers three regimes of thermal convection: (i) steady 
two-dimensional convection, (ii) time-periodic convection and (iii) aperiodic 
convection. Numerical solutions are obtained for each of these regimes and the 
results are compared with the available experimental data and theoretical 
predictions. 

At the Rayleigh number Ra = 4000 the present model is able to produce 
experimentally realistic wavelengths for the two-dimensional convection. The 
small amplitude wave disturbances at Ra = 6500 have period r = 0.24. When 
they become finite amplitude travelling waves, the period is r = 0.27. These 
values are in good agreement with theoretical and experimental results. Adetailed 
study of the form of these waves and of their energetics is given in appendix A. 
As the Rayleigh number is increased to Ra = 9000 and 25000, the convection 
manifests progressively more complex spatial and temporal variations. 

The vertical heat transport and other mean properties of the convection are 
calculated for the range of Ra considered and compared with experimental and 
theoretical data. A detailed comparison is also made between the mean pro- 
perties of two- and three-dimensional convection at the larger values of Xu. It is 
found that the heat flux Nu is nearly independent of the dimensionality of the 
convection. 

1. Introduction 
Many investigators have examined the dynamics of BBnard convection as the 

gravitational instability is increased. Perhaps the most definitive experimental 
description of this problem has been given by Krishnamurti (1970u, b,  1973), who 
discussed the increasing complexity of the flow patterns as the Rayleigh number 
is increased for a wide variety of fluids. Her data are summarized in figure 4 of 
Krishnamurti (1973), where the different flow regimes are mapped out in Prandtl 
number, Rayleigh number parameter space. 

The present study is limited to Bhnard convection in air for small and moderate 
values of the Rayleigh number Ra. For this case, the experimental work of 
Willis & Deardorff (1967,1970) has to be considered of fundamental importance 
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as well. These experimentalists and Krishnamurti both found that the convection 
takes the form of quasi-steady two-dimensional flow for small values of Ru. 
When the Rayleigh number is increased to Ru II 5600, three-dimensional time- 
periodic disturbances first appear. As the Rayleigh number was increased above 
Ru N 12 000, Willis & Deardorff (1970) observed more complex spatial and 
temporal variations in the convection. For the present discussion this type of 
fluid motion will be called ‘aperiodic’ convection. When Ru > 30 000, Willis & 
Deardorff found that the convection was sufficiently turbulent in appearance 
that well-defined thermal oscillations were rarely discernible at a given point. 

A linear stability analysis of the onset of time-periodic disturbances was carried 
out by Busse (1 972). His theory assumed conducting stress-free boundaries and 
was valid in the limit of vanishing Prandtl number, Pr -+ 0. He found that the 
oscillatory instability is associated with the momentum advection terms in the 
equations of motion. These terms give rise to a vertical component of disturbance 
vorticity . 

The above analysis was extended by Clever & Busse (1974) to include finite 
values of Pr. Conducting rigid boundaries were assumed so that the theoretical 
predictions could be compared with experimental data. The stability of two- 
dimensional rolls was tested with respect to the cross-roll, zig-zag and Eckhaus 
instabilities as well as the oscillatory instability. Using the observed wavelengths, 
Clever & Busse found that two-dimensional rolls are stable in air for 
1708 < Ru < 6000. When Ru 2 6000, the oscillatory instability is present. The 
structure and periods of these theoretical disturbances are in excellent agreement 
with the experimental data. Clever & Busse also calculated the vertical heat 
transport associated with the roll solution for 2000 < Ru < 50 000. 

In  the present study a numerical model is developed which is capable of simu- 
lating three-dimensional thermal convection. This model is used to investigate 
the dynamics of BBnard convection in air for values of Ru between 4000 and 
25000. As indicated by the above discussion, the present range of Rayleigh 
numbers includes three regimes of thermal convection in air: (i) steady two- 
dimensional flow, (ii) three-dimensional time-periodic flow and (iii) aperiodic 
flow. Thus the present calculations are able to simulate a wide variety of con- 
vective motions over a relatively narrow interval of Rayleigh numbers. 

The theoretical model for the present study is given in $2. This discussion 
includes the equations of motion, the energy equations and the numerical model. 
The results of the numerical calculations are presented in order of increasing 
Rayleigh number. The steady two-dimensional regime is discussed in $3. A 
detailed analysis of the calculated time-periodic disturbances at Ru = 6500 is 
given in 3 4 and appendix A. This analysis includes a description of the velocity 
and temperature fields, a discussion of the energetics, and a comparison of the 
present results with previous theoretical and experimental investigations. In  $ 5 
numerical simulations for Ru = 9000 and Ru = 25 000 are presented. These solu- 
tions show increasingly complex space and time variations in the flow fields as 
the Rayleigh number is increased. 

The mean statistics for BBnard convection in air are calculated in $ 6  for the 
interval 4000 < Ru < 25 000. The quantities obtained include volume-averaged 
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statistics such as the mean vertical heat flux and horizontally averaged statistics 
such as the variation of the mean temperature with height. The kinetic energy 
balance is calculated as a function of Ra.  Also, the present results are compared 
with the existing experimental and theoretical data. A summary and the primary 
conclusions of this study are presented in 3 7. 

2. The theoretical model 
In  this investigation we examine the convection which develops in a fluid layer 

confined between two horizontal plates. The plates, separated by a distance d ,  
are assumed to act as rigid, perfectly conducting boundaries. The unstable 
temperature difference AO between the boundaries is assumed to be much less 
than the mean temperature of the fluid layer. For this problem the kinematic 
viscosity v, the thermal diffusivity K and the coefficient of thermal expansion a 
may be treated as constants since the temperature variation is small. In  addition, 
the Boussinesq approximation may be used (Chandrasekhar 1961, p. 16). 

In  the BBnard convection problem the fluid is usually assumed to be unbounded 
horizontally. However, the numerical model used in this study requires that some 
kind of boundary conditions be applied a t  lateral boundaries. The boundary con- 
ditions chosen should be such that they exert a minimum constraint on the fluid 
motions. In  this investigation we assume that the flow is periodic at lateral 
boundaries. 

2.1. The equations of motion 

Cartesian co-ordinates are defined, with xr and y' horizontal and x r  directed 
upwards. The corresponding velocity components are u', v' and w'. The primes 
indicate that the above variables are dimensional. The dimensionless variables 
are formed by using d, d21K and A3 as the scales for length, time and temperature 
respectively. 

The four non-dimensional parameters relevant to the present problem are the 
Rayleigh number Ra,  the Prandtl number Pr and the aspect ratios s, and s,: 

R a  = g c d O d 3 1 V ~ ,  p r  = Y I K ,  S, = L,fd, 8y = L,/d, (1) 

where g is the acceleration due to gravity and L, and L, are the horizontal 
dimensions of the present model. The existence of s, and sy indicates that the 
present problem has a finite horizontal domain. Also, since the present study is 
limited to €%nard convection in air at room temperature, Pr = 0-7 for all cases. 

Using the Boussinesq approximation, the dimensionless continuity, momen- 
tum and thermodynamic equations are 

v.v = 0, (2) 

av a a a -+- (uV)+- (vV)+-(WV) = -Vp+PrRa8k+PrV2V, 
at ax ay ax (3) 

8-2 
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where V is the velocity, 8 is the temperature, p is the pressure and k is a unit 
vertical vector. The rigid conducting boundary conditions are V = 0 and 0 = JJ 
a t  z = 0 and V = 0 and 0 = - + a t  z = 1. The periodic side boundary conditions 
require cyclic continuity at  x = 0 and x = s, and at  y = 0 and y = sy. 

2.2. The energy equations 
The total kinetic energy K and the total available potential energy P are defined 

P = - Pr Ra j :  z(O)dz, 

where angle brackets indicate an average over the entire horizontal domain. The 
equations for the time rates of change of K and P are 

(6 a)  
(6 b)  

(6 c )  

dK/dt = {PK) - D, 
dP/dt = - {PK) + PP, 

where {PK), D and PP are defined as 

{PK) = Pr Ra rfil (w6)dz, 
- -  

(Vu.Vu+Vv.Vv+Vw.Vw)dz, 

In these expressions, {PK) is the conversion of potential energy into kinetic 
energy associated with the eddy transfer of heat (we), D is the dissipation of 
kinetic energy by viscosity, and PP is the production of available potential 
energy due to  diffusion of heat at  the upper and lower boundaries. 

A quantity closely related to the energetics is the total vertical heat flux. This 
quantity includes the heat flux due to both the eddies and the thermal diffusion. 
In a steady state, the total heat flux is independent of z. In  that case the Nusselt 
number N u  is given by 

After integrating this equation once in the vertical we obtain 
NU = -a(o)/a$+ (we>. (7) 

{PK) = Pr Ra ( N u  - 1). (8) 

Thus N u  and {PK) are linearly related in a steady state. 

2.3. The numerical model 
The numerical procedure for the time integration of (3) and (4) follows that 
described by Williams (1969). This procedure includes the solution of a numerical 
Poisson equation at  each time step in order to obtain the pressure p .  The present 
calculations have the simplification that Cartesian co-ordinates may be used 
whereas cylindrical co-ordinates are required in Williams’s study. The present 
numerical model was used in the investigations of Lipps & Somerville (1971) and 
Somerville & Lipps (1973). 
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Run Ra 

A 4 000 
B 4 000 
C 6 500 
D 9 000 
E 25 000 
P 6 500 
P 1  6 500 

9, SY 

6.00 4.91 
6.00 4.67 
4.00 3.20 
4.00 3-50 
3.90 3.90 
2.00 3.20 
2.00 3.20 

T N X  

12.89 44 
8.21 36 

10.26 28 
5.43 36 
2-38 40 
9.65 20 
0.96 20 

N Y  

36 
28 
20 
32 
40 
32 
32 

N, Nt 
16 5460 
14 3420 
14 8550 
18 6030 
20 4770 
20 12060 
20 2400 

TABLE 1. Summary of primary numerical calculations for 
BBnard convection in air 

The present calculations differ in a few respects from those described by 
Williams (1969). The nonlinear advective terms in (3) and (4) are put into the 
finite-difference form discussed by Piacsek & Williams (1970) for absolute 
quadratic conservation. The viscous and diffusive terms in (3) and (4) are calcu- 
lated using the DuFort-Frankel difference scheme (Richtmyer & Morton 1967, 
p. 176). In  Williams’s procedure these terms were calculated at the lag time step. 

The DuFort-Frankel scheme is stable for any value of the time step At, but is 
very inaccurate if At is large. This inaccuracy occurs because the DuFort-Frankel 
scheme introduces an artificial second time derivative into the finite-difference 
equations (Richtmyer & Morton 1967, p. 177). A detailed discussion of time and 
space truncation errors is given in appendix B. The advantage of using the 
DuFort-Frankel scheme is that at small Ray where the time variation is relatively 
slow, a larger value of At may be used than would be possible if the viscous and 
diffusive terms were evaluated at the lag time step. 

The primary numerical calculations in the present study are listed in table 1 
and will be discussed in detail below. In  this table T is the total non-dimensional 
time of the run, and A?,, A?,, A?, and Nt are the number of grid points in x, y, z and t 
respectively. The corresponding grid intervals Ax, Ay, Az and At for the numerical 
runs A-Fl are given in table 5 in appendix B. 

3. The two-dimensional regime 
BBnard convection in air is first examined for values of Ra in the interval 

1708 < Ra < 5600, where the flow is observed to be quasi-two-dimensional and 
steady. For this problem it might be thought that a two-dimensional numerical 
model would be sufficient to study the dynamics of the convection. If, however, 
the correct wavelength for the rolls is to be obtained from solving an initial-value 
problem, a three-dimensional numerical model is required (Lipps & Somerville 
1971). This is because the transient motion leading up to the asymptotic two- 
dimensional steady state is three-dimensional. If a two-dimensional model is used 
to obtain solutions for the initial-value problem, the calculated wavelengths of 
the rolls will be smaller than is experimentally observed. 

An example of such an initial-value calculation is run A in table 1. This calcula- 
tion was carried out for Ra = 4000 with the aspect ratios s, = 6-00 and sy = 4-91. 
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FIGTJRE I. (a) Isotachs of vertical velocity w and ( b )  isotherms of temperature 8 in the 
x, y plane for Ra = 4000. This cross-section is for the mid-level z = 9 at t = 4.39 in run A .  
Heavy lines separate areas of positive and negative w or 8. The stippled areas are negative. 
The contour interval is 7.5 for w and 0.15 for 8. 
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The initial conditions require the air to be a t  rest (V = 0)  and the temperature 8 
to be given by the conductive solution with a random disturbance superimposed 
upon it. Because of the thermal instability many cells formed a t  the beginning of 
the run. As the run progressed, many of these cells combined, so that the hori- 
zontal scale of the disturbances increased. In  figures 1 (a)  and (b )  the fields of 
w and 8 at z = 4 are shown at the non-dimensional time t = 4.39. On the left side 
of the horizontal domain there is a strong cell of positive w and 8 surrounded by 
concentric contours of negative w and 0. After t = 4.39 this positive cell began 
to weaken slowly. At about t N 9.2 another positive cell formed near the upper 
left-hand corner of the domain. This cell then decayed slowly. As it did so, rolls 
formed on the left side of the domain, parallel to y. At the end of the run, 
t = T = 12.89, the pattern was fully two-dimensional with rolls parallel to y. 
The wavenumber n, of this final flow field was n, = 2, which corresponds to a 
wavelength A,,, = 3.00. This calculation (run A )  was discussed briefly in Lipps 
& Somerville (1971). A similar calculation was performed by Somerville (1973), 
who also obtained A,,, = 3.00. 

A second calculation (run B)  was carried out at Ra = 4000, with s, = 6.00, 
s, = 4.67 and a slightly poorer spatial resolution (table 5). After calculations had 
been performed for a non-dimensional time t = 8.21, the flow field was again 
approaching a two-dimensional steady state. The geometry of this flow field was 
such that n, = 2 and n, = 1, so that the wavelength was given by A,,, = 2.52. 

Although two cases do not represent an adequate statistical sample, i t  may be 
seen that the average value of A,,, a t  Ra = 4000 from runs A and B is close to 
the experimental value Aexp = 2.8 given by Willis, Deardorff & Somerville (1 972). 
It should be noted that the experimental wavelength was obtained as an average 
over many experimental realizations. The dynamics of this wavelength selection 
are not understood. Apparently, the dynamics are reproduced in a three- 
dimensional model as here, but not in a two-dimensional model. 

The numerical calculations a t  Ra = 4000 did not exhibit the very slow time 
oscillations discussed by Willis & Deardorff (1967, 1970). The absence of these 
oscillations may be due to the time and horizontal domain limitations of the 
numerical model. The period of these slow oscillations has a non-dimensional 
value of about ten. 

4. Onset of three-dimensional disturbances 
It is observed that three-dimensional time-periodic disturbances develop when 

the Rayleigh number exceeds Ra 21 5600. These disturbances first appear as 
small amplitude waves superimposed on the finite amplitude two-dimensional 
rolls. They can take the form either of standing waves or of travelling waves 
which propagate along the rolls. The present numerical model has been used to 
investigate the dynamics and energetics of these disturbances. 

When the Rayleigh number is increased above Ra = 5600, higher grid resolu- 
tions are needed, and it is therefore no longer feasible to prescribe a large enough 
horizontal domain so that the convection has sufficient freedom in ‘choosing’ 
the preferred scale. Thus a compromise was made for values of Ra above 
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R a  = 5600: a roll width close to that given by Willis et al. (1972) was prescribed 
in the initial conditions, but the fluid was allowed to ‘choose’ the wavelength of 
the three-dimensional disturbance superimposed upon the roll. 

Specifically, when Ra 2 6500, the initial conditions were that (i) the fluid is at 
rest (V = 0) and (ii) the temperature 8 is given by 

8(x, y, z, 0) = 0.5 - z + 0.1 sin (2ny/s,) sin (nz) +Or, (9) 

where 8, is a small random temperature disturbance. For sufficiently large values 
of s,, the above initial conditions allow the fluid the freedom to ‘choose’ the 
wavelength A, of the disturbances which form along the rolls. I n  practice, how- 
ever, the values of s, were about twice the expected values of A,. Thus the present 
resolution allowed limited freedom in the selection of A,. 

4.1. Onset of travelling waues at Ra = 6500 

The first numerical experiment carried out with the above initial conditions was 
run C in table 1, at Ra = 6500. The horizontal domain is given by s, = 4.00 and 
sy = 3.20. After a non-dimensional time t = 3-0, clearly defined small amplitude 
wave disturbances are superimposed upon the finite amplitude rolls. These dis- 
turbances have a wavenumber n, = 2, or a wavelength in the x direction of 
A, = 2.0. At this early stage in their development the disturbances seem to be 
primarily standing waves with a period r = 0.26. Near the end of the run the 
disturbances are travelling waves with the period T = 0-28. These have constant 
amplitude, so that a steady state exists in a co-ordinate system moving with the 
waves. Fields of w and 8 a t  z = 0.6 are shown in figure 2 for the end of run C 
(T = 10.26). The wavy patterns in this figure move from right to left, indicating 
a negative phase velocity c,. 

Figure 3 shows the fields of w and 0 in the y, z plane. These cross-sections are 
for the value of x indicated by the arrow in figure 2. The variables w and 0 are 
shown at two different times, t = 10.17 and t = 10.26. Since the period of the 
oscillations is T = 0.28, this time interval represents nearly one-third of a period. 
The w and 8 fields plotted at t = 10.1 7 show these variables just after their maxi- 
mum displacement towards smaller values of y while the fields plotted a t  t = 10.26 
show these variables just prior to their maximum displacement towards larger 
values of y. It appears that, as the wave patterns move along the rolls, the vertical 
velocity field is more strongly affected by the disturbances than is the tempera- 
ture field. This tendency is seen in both figure 2 and figure 3. 

The present value of A, can be compared with results from the stability analysis 
of Clever & Busse (1974). For a roll wavelength of A, = n, the data in figure 8 of 
their study show that the most unstable wavelength is A, = 2.6 at Ra = 6500. 
The value A, = 2.0 found above is strongly influenced by the choice of s, = 4.00. 

4.2. Energetics at Ra  = 6500 

The data for the energetics are taken from runs P and 3 1  in table 1. For both of 
these runs the horizontal domain is given by s, = 2.00 and sy = 3-20. The wave- 
number of the disturbances in the 2 direction is n, = 1, so that the wavelength 
remains A, = 2.0. The energetics are calculated from these runs instead of run C 
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FIGURE 2. (a) Isotachs of vertical velocity w and ( b )  isotherms of temperature 6 in the 
x, y plane for Ra = 6600. This cross-section is for z = 4 at the end of run C ( t  = 10.26). 
The contour interval is 745 for w and 0.15 for 6. The arrow indicates the value of 1: for the 
y, z cross-sections shown in figure 3. Stippled areas are negative. 

because the numerical space and time truncation errors are less. Thus the quanti- 
tative data will be more accurate. A detailed discussion of the numerical trunca- 
tion errors associated with the three runs C ,  P and P1 is given in appendix B. 

The initial conditions for run P were the same as those used for run C .  The 
two-dimensional roll solution came into equilibrium after a time t N 0.60. By the 
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FIGURE 3. Cross-sections of w (upper diagram of each pair) and r3 (lower diagram) in the 
y, z plane for Ra = 6500 from run G. (a )  t = 10.17. ( b )  t = 10.26. The contour interval is 
7.5 for w and 0-15 for 8. Stippled areas are negative. 

time t N 2-50, the wave disturbances had become organized and were very small 
and growing. The energetics a t  this time were still dominated by the finite ampli- 
tude two-dimensional roll solution. The values of K ,  P, Nu, {PK} and T are shown 
in table 2 for t N 2.50 for run F. After run F had been completed (T = 9-65), the 
final values of V and f3 were used as the initial conditions in run F1. At the end of 
run F1 (T = 0-96), the energetics of the convection with both the rolls and the 
finite amplitude travelling waves were in a steady state. The values of K ,  P, Nu, 
{PK) and T for these fully developed wave disturbances are also given in table 2. 

The data shown in table 2 indicate that the development of travelling waves 
with A, = 2.0 a t  Ra = 6500 slightly decreases the intensity of the convection. 
Consistent with this interpretation, the values of K ,  Nu and {PK} are smaller and 
P is larger when finite amplitude travelling waves are present. These detailed 
results, however, may not be the same for other values of A,. In  a more general 
sense, the data in table 2 suggest that the energetics are relatively insensitive to 
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K P N u  {PK} 7 

Onset value 86.9 251 2.08 4910 0.24 
Final value 86.7 256 2.05 4780 0-27 

TABLE 2. The values of K ,  P, Nu, {PK} and T at Ra = 6500 from runs P and Pi. The upper 
row of values is taken at the time t N 2.50 from run P. The lower row is taken from the 
end of run 3’1. 

the existence of time-periodic disturbances. This conclusion is consistent with 
the data for K and N u  in table 3 and the discussion in $6.2. 

The values of T in table 2 are virtually the same as those obtained previously 
for run C. The present values can be compared with previous experimental and 
theoretical results. From figure 9 of Willis & Deardorff (1970), the experimental 
value r = 0.32 a t  Ra = 6500 is obtained. This value is best compared with the 
final value r = 0.27, when the numerical disturbances were of finite amplitude. 
Theoretical values of T can be found from figure 8 of Clever & Busse (1974). The 
value 7 = 0-23 is obtained for A, = rr, A, = 2-0 and Ra = 6500. This value is best 
compared with the onset value, T = 0.24, when the numerical disturbances were 
very small. Thus the numerical values of r are in good agreement with experi- 
mental and theoretical results. 

The energetics and dynamics of the disturbances are discussed in greater detail 
in appendix A, where the total flow field is separated into the mean flow (average 
taken along z) and the disturbance flow. Thus the total kinetic energy K is 
separated into a mean flow kinetic energy g associated with the rolls and a dis- 
turbance kinetic energy K’ associated with the oscillations. The primary 
conclusions from appendix A are summarized in § 7. 

One result that can be discussed here is the relationship between r and the 
mean flow kinetic energy g .  According to Busse & Whitehead (1974), the period T 

is proportional to the circulation time of the mean flow. In  the present problem 
the wavelength A, of the mean flow is held fixed. For this discussion, we assume 
that the spatial variation of the mean flow is virtualIy unchanged for modest 
changes in K. Under these conditions, the statement by the above authors can be 
represented by the relation rcc g-*. At the onset of the disturbances, T = 0.24 
and K = = 86.9 as given in table 2. When the disturbances reach finite ampli- 
tude, r = 0.27 and = 62.8 (as given in figure 14). These two sets of values are 
compatible with the relationship roc B-4 to within 5 %.t Thus the present data 
also imply that T is proportional to the circulation time of the mean flow. 

5. Convection at higher Rayleigh numbers 
The two remaining numerical solutions to be discussed are for the Rayleigh 

numbers Ra = 9000 and Ra = 25 000. These calculations are denoted in table 1 
as runs D and E. The initial conditions are as in run C, where V = 0 and the 
temperature 0 is given by (9). 

values of T .  

t The same result is obtained if an extra decimal place is retained in the calcdated 
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At Ra = 9000 the convection is still essentially periodic in time. When the 
Rayleigh number was increased above Ra = 12 000, Willis & Deardorff (1970) 
observed that more complicated time-dependent motions became increasingly 
frequent. These motions took the form of breaking waves and isolated sharp- 
crested waves of short wavelength. These types of aperiodic motion are seen in 
the numerical solution a t  Ra = 25 000. 

5.1. Time-periodic convection at Ra = 9000 

The horizontal aspect ratios for run D are given by s, = 4.00 and s, = 3.50. With 
the above initial conditions, rolls parallel to the x axis quickly formed with the 
wavelength A, = 3.5. By t N 0.90 travelling wave disturbances had formed with 
a negative phase velocity c, and a wavelength A, = 2.0. These waves had a period 
7 = 0.26 and their amplitude was nearly the same whether they were travelling 
upon the middle roll (centred at y = is,) or upon the outside roll (centred at 
y = 0 or y = s,). At t 21 1-00, however, the amplitude of the disturbances became 
larger on the centre roll. After some transient effects, the large amplitude dis- 
turbances then moved to the outside roll at t -N 2.5 and remained there until the 
end of run D. 

At t N 2-2 the disturbances started moving a t  different phase speeds on the 
two rolls. The larger amplitude disturbances on the outside roll moved more 
slowly than the weaker disturbances on the centre roll. The difference in phase 
velocities increased from t 1: 2.2 until t 21 3.8. From t N 3.8 until the end of the 
run (t  = 5.43) the phase velocities of the disturbances changed relatively little. 
At the end of the run the period of the weaker disturbances on the centre roll was 
7 N 0.24 while the much larger amplitude disturbances on the outside roll had 
period T N 0.45. 

Figure 4 shows the fields of w and 8 at the x = 4 mid-level for the end of the run. 
Again, the disturbances in the w field appear to have larger relative amplitude 
than those in 8. In  figure 5 vertical cross-sections of thew and 8 fields in the x, 
z plane are shown for y = 0. These cross-sections cut through the centre of the out- 
side roll, where the travelling waves have the larger amplitude and longer period. 
Figure 6 shows the corresponding cross-sections at y = is, for the weaker distur- 
bances superimposed upon the centre roll. Here it is seen that the flow is more com- 
plex than a simple n, = 2 periodicity in x. The first cell for positive w and the last 
cell for negative w are clearly somewhat stronger than the two middle cells for w. 

The time variation of w and 8 at two specific points on the plane z = 4 is shown 
in figure 7. The f i s t  of these is at y = 0, a t  point A in figure 4. Here the outside- 
roll disturbances have maximum amplitude. It is seen that the wave patterns on 
this roll are relatively periodic. The second point is located on the centre roll at 
y = is,, a t  point B in figure 4. Here the time variation of w and i9 is more irregular. 
It should be noted that the periods 7 N 0.24 for the centre-roll disturbances and 
7 = 0.45 for the outside-roll disturbances were obtained as mean values from the 
two time variations of w shown in this figure. 

Somerville (1973) also carried out a numerical simulation at Ra = 9000 and ob- 
tained travelling wave solutions. His calculations, however, were not reported to 
give the varying phase speed and amplitude of the travelling waves found above. 
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FIQURE 4. (a) Isotachs of vertical velocity w and ( b )  isotherms of temperature 6 in the 
2, y plane for Ra = 9000. This cross-section is shown for z = 3 at the end of run D. The 
contour interval is 7.5 for w and 0.15 for 6. Stippled areas are negative. The two points a t  
which w and 0 are shown as functions of time in figure 7 are indicated by A and B. 
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FIGURE 5. Cross-sections of (a )  w and ( 6 )  8 in the plane y = 0 for Ra = 9000. Stippled areas 
are negative. The contour interval is 7.5 for w and 0.15 for 0. 
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FIGURE 6. Cross-sections of (a )  w and ( b )  8 in the plane y = 48, for Ra = 9000. Stippled 
areas are negative. The contour interval is 7.5 for w and 0.15 for 8. 

5.2. Aperiodic convection at Ra = 25 000 

The horizontal aspect ratios for run E ares, = 3.90 and s, = 3.90. For the present 
initial conditions, rolls parallel to the x axis with the wavelength A, = 3.9 were 
expected to develop. However, as seen below, a more complicated time-dependent 



Three-dimensional Bdnard convection in air 127 
30 , I 

-0.5 J I 1 , I 

4.05 4.25 4-50 4.75 5.00 5.20 

( b )  

Time 

FIGURE 7. Time variation of w and 0 on the mid-level z = + for Ra = 9000 at  the points 
denoted by (a) A and (a) B in figure 4. -, results obtained from run D ;  ---, time 
variation when the time step A8 was reduced by one-half (see appendix B). 

three-dimensional pattern evolved. The wavelength h, = 3.9 is in good agreement 
with the recent data given by Willis et al. (1972). 

Early in this run the rolls with the wavelength A, = 3.9 were better organized 
and thus started developing more rapidly than the disturbances. By t N 0.18, 
however, wavelike w disturbances were becoming of large amplitude a t  the level 
z = s. There was a tendency for tongues of positive and negative w to form 
parallel to the y axis, normal to the rolls. The wavenumber of this x-dependent 
motion was n, M 2. The hhermal oscillations were again considerably weaker in 
amplitude than the vertical velocity fluctuations. 

By the time t N 0-32, w cells of large amplitude were lined up more nearly 
parallel to they axis than the x axis. The 8 field was now highly disturbed, but 
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FIGURE 8. (a) Isotachs of vertical velocity w and ( b )  isotherms of temperature 0 in the 
x, y plane for Ra = 25 000. This figure is for z = + at  t = 2.205. The contour interval is 
15.0 for w and 0.15 for 8. Stippled areas are negative. The four points a t  which w and 8 axe 
shown as functions of time in figure 10 are indicated by A ,  B, C and D.  
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still lined up more nearly parallel to the x axis as in the original rolls. As the w 
oscillations continued to grow, the roll-like thermal disturbances at  both y 2: as, 
and y 2: $s, became broken by narrow regions of temperature 8 of the opposite 
sign to that of the original rolls. These narrow regions correspond to intense 
vertical velocity cellslined up parallel to y. This type of convective motion appears 
to be very similar to the breaking wave motion discussed by Willis & Deardorff 
(1970). They observed that for Ra > 12 000 fluid at the crest of one oscillating 
roll would occasionally spill into the next roll with vorticity of the same sign. 

When t 2: 0.46, the 8 field started looking more like the fully developed 
temperature field, with a cell of minimum temperature located near x = 1.2, 
y = 3.2 and a cell of maximum temperature located near x = 3.2, y = 1.3 a t  the 
level z = 4 (see figure 8). The w field at this time was still very closely parallel to y. 
By t 2: 0-60 the w field was considerably less parallel to y and both fields started 
exhibiting the types of patterns characteristic of the remainder of the run. 

A typical example of the w and 8 fields at the level z = 8 is shown in figures 
8(a)  and (b)  for the time t = 2.205. For this case the upward vertical velocity 
appears to be dominant with a roll-like feature across the horizontal region a t  
y M 1.1. Another area of positive vertical velocity cuts across the horizontal 
region at x M 2-8. These regions of upward velocity in figure 8 (a )  correspond to 
regions of positive temperature in figure 8 ( b ) .  However, the most prominent 
features in figure 8 ( b )  are the positive temperature cell towards the lower right 
and the negative temperature cell in the upper left portion of this figure. These 
two cells are semi-permanent features of the present run a t  Ra = 25 000. 

The type of semi-cross-roll pattern with positive vertical velocity in the roll- 
like disturbances was observed during a large part of the present numerical 
experiment. This flow pattern was dominant early in the run, from t c 0.6 until 
t 2: 1.3, and later, from t N 1-7 until t 2: 2.34. In  between these times a similar 
cross-roll pattern tended to be dominant but with negative vertical velocity in 
the roll-like disturbances. In  that case the positive and negative temperature 
cells were still present, but both were displaced towards larger values of x and y 
relative to the temperature cells shown in figure 8 (b ) .  The above time variations 
suggest a period of r 2: 1-3 for the cross-roll pattern. 

The short-term variations in the convection are examined by comparing the 
w and 8 fields a t  z = 8 shown in figures 8 (a) and ( 6 )  with the same fields at a time 
St = 0.03 later. The later fields, at the time t = 2.235, are shown in figures 9 (a) 
and (b) .  One of the major changes in the vertical velocity field is that the weak 
downward velocity cell near the centre of figure 8 ( a )  has shifted to the right, 
become much more intense, and has made a strong intrusion into the positive 
vertical velocity cross-roll pattern. A clearly defined tongue of negative tempera- 
ture associated with this transient disturbance is seen in figure 9 (b) .  After this 
time, this negative velocity disturbance is observed to propagate in the + y 
direction along the cross-roll pattern and then lose its identity. A second major 
change in the vertical velocity field seen in figure 9(a )  is the intense upward 
velocity centre which appears to have formed from the merging of two weaker 
cells on the roll-like feature located at x M 2.8. This cell then propagates some- 
what further in the + y direction before weakening and losing its identity. Both 

9 F L M  75 
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FIGURE 9. (a) Isotachs o f  vertical velocity w and ( b )  isotherms of temperature 0 in the 
x, y plane at Ra = 25 000. This figure is for z = 4 at  t = 2.235. Notation is the same as 
in figure 8. 
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FIGURE 10. Time variation of w and 8 on the mid-level z = + for Ra = 25 000 at the points 
denoted by (a)  A ,  ( b )  B, ( c )  C and (d )  D in figures 8 and 9. - - - , resu l t s  obtainedfrom run E ;  
-_- , time variation when the time step At was reduced by one-half (see appendix B). 

of these disturbances appear to be examples of the type of short-lived waves 
observed by Willis & Deardorff (1970) for Ra > 12 000. The present disturbances 
formed and dissipated in a time interval roughly given by r N 0.10. 

The time dependence a t  the level z = & is further examined by showing in 
figure 10 the time variations of w and 0 a t  the four points denoted by A ,  B,  C and D 
in figures 8 and 9. These time variations are shown for the time interval 
1.935 < t < 2.385, where the latter time is at the end of run E .  The points 
labelled A ,  B, C or D in figure I0  indicate where these time plots intersect 
figures 8 and 9. 

When the time variations at the four points are compared, i t  is seen that the 
type of oscillation is different at each point. This is one measure of the com- 
plexity of the time oscillations at Ra = 25 000. Thus the simple picture of a mean 
roll pattern with the rolls parallel to the x axis is not valid for the present 
numerical simulation. As discussed above, the mean flow during the time varia- 
tions shown in figure 10 appears to be more accurately described by a cross-roll 
pattern with upward velocity oriented along the lines y M 1-1 and x M 2.8. 

The time variations seen in figure I0 can therefore be thought of as due to the 
superposition of finite amplitude disturbances upon the cross-roll mean flow 
pattern. The periods of the time oscillations in figure 10 are quite variable, being 
approximately in the range 0.05 < T < 0.20. The mean flow itself is not steady 
but changes more slowly with time. As discussed previously, the cross-roll 
pattern apparently has the period T N 1.3. 

In conclusion, the numerical periods obtained at Ra = 9000 and Ra = 25 000 
are compared with experimental and theoretical data. For Ra = 9000, the value 
r -" 0.28 is found from figure 9 of Willis & Deardorff (1970). The same period is 

9-P 
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also obtained from figure 12 of Clever & Busse (1974) for a wavelength A, = 2.1. 
These results are in reasonable agreement with the period r N 0.24 found in 
run D at Ra = 9000. The range of values 0-05 < T < 0.20 found in run E at 
Ra = 25000 is in qualitative agreement with the experimental data shown in 
figure 3 of Krishnamurti (1973) and with the theoretical results shown in figure 12 
of Clever & Busse (1974). 

The longer numerical periods, however, are not in agreement with either experi- 
mental or theoretical data. These periods are r 21 0.45 for the large amplitude 
disturbances a t  Ra = 9000 and r 21 1.3 for the mean flow at R a  = 25 000. Longer 
period oscillations do exist in BBnard convection in air as indicated by Willis & 
Deardorff (1967). These experimental periods, however, are much longer than 
the above periods. The reason for this discrepancy may be that the numerically 
obtained periods are strongly influenced by the periodic side boundary conditions. 
Also Willis & Deardorff (1 967) indicated that their long period oscillations may 
be strongly dependent on experimental conditions. They predicted that the 
short period oscillations would be more amenable to theoretical analysis. 

6. The mean statistics for BCnard convection in air 
In  the present section we examine the mean properties of BBnard convection 

in air. These mean properties include the horizontal scale of the convection, the 
total kinetic energy K and the vertical heat flux Nu. In  addition, a series of 
horizontally averaged statistics will be presented. These variables include the 
horizontally averaged temperature (O), the correlation of vertical velocity and 
temperature r(wO), and the horizontally averaged kinetic energy (Ic). These 
quantities will be shown as functions of z for Ra = 4000, Ra = 9000 and 
Ba = 25 000. The kinetic energy balance will also be discussed for these values 
of Ra. This discussion will follow that given by Deardorff & Willis (1967). 

6.1. The variation of hrizontal scale with Ra  

In  the present investigation two different types of horizontal scale are considered. 
The first is an integrated average scale S.  For the vertical velocity field this 
average is given by s, = 2n{w2>q{ - w v g  w p ,  

where V g  is the horizontal Laplacian operator and the brackets indicate that an 
average has been taken over the entire volume. An analogous scale So is defined 
in terms of the temperature field. The second type of horizontal scale considered 
is the wavelength h of the mean flow. It is this scale which corresponds to the 
roll wavelengths observed by Willis et al. (1 972). However, the integrated average 
scales S,  and So may be more relevant to the dynamics of the convection. This is 
particularly the case a t  Ra = 9000 and Ra = 25000, where large amplitude 
transient disturbances are superimposed on the mean flow. 

Numerically calculated values of X,,,, So and A,,, are given in table 3 for runs 
A ,  B, D and E .  For runs D and E the values given are the result of averaging the 
data over specified times during the calculations. In  run D an average over six 
different times was used while in run E an average over ten different times was 
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taken. The values given for runs A and B represent the final steady-state values 
for these runs a t  R a  = 4000. Calculations were also performed with a two- 
dimensional numerical model at R a  = 9000 and Ra = 25 000. These calculations 
are denoted in this table by run D-2D and run E-2D respectively. Owing to the 
two-dimensional constraint, these runs approached a steady state. 

The data in table 3 indicate that S, and So are nearly the same as Anurn in runs 
A and B, where the convection is two-dimensional. For three-dimensional con- 
vection at R a  = 9000 and Ra = 25 000, however, the scales s, and So are much 
smaller than Anurn. When the convection is constrained to be two-dimensional as 
in runs D-2D and E-2D, the values of AS', and So are also smaller than Anurn but 
are not nearly as small as in runs D and E, with three-dimensional disturbances 
present. A comparison of S, and So in runs D and E indicates that S, is the 
smaller and So is the larger. This result is in conformity with the previous observa- 
tions that the three-dimensional disturbances show up more strongly in the 
vertical velocity field than in the temperature field. 

In  table 3 it may be seen that the values of Anurn and A,,, are in reasonable 
agreement for all cases except run E. In  that case the mean flow did not take the 
form of rolls with h, = 3.9 as expected. Instead the mean flow took the form of 
the cross-roll pattern discussed previously. This three-dimensional mean flow 
has the wavelength h = 2.76. 

6.2. The variation of K and N u  with Ra 
The calculated values of the total kinetic energy K and the mean vertical heat 
flux Nu are shown in the final two columns of table 3. It may be seen that the 
values of K and Nu for runs D and E are nearly the same as those calculated for 
runs D-2D and E-2D. Thus it appears that K and N u  are relatively insensitive 
measures of the dynamics of the convection. This is particularly the case for the 
heat flux N u  for the range of Ba considered. This may explain why Willis et al. 
(1972) were able to obtain good agreement between their experimental and 
numerical values of Nu for air. Their numerical calculations were carried out 
using a two-dimensional model for values of R a  < 20 000. 

The dependence of K and N u  on the disturbance wavelength A, was examined 
by making an additional calculation a t  R a  = 9000 with 5, = 4.90 and s, = 3-50. 
This value of s, allows the wavelength A, = 2.45, which is essentially the observed 
value (Willis & Deardorff 1970). After some initial transients, the flow patterns 
were similar to those discussed previously for run D. The mean values K = 138.7 
and Nu = 2.24 were obtained. Thus K and N u  changed relatively little as A, was 
increased from A, = 2.0 (run D) to A, = 2.45. This result and the data in tables 
2 and 3 support the opinion of Clever & Busse (1974) that the onset of the 
oscillatory instability would have little effect upon Nu.  

An estimate was made of the finite-difference truncation errors associated 
with Nu so that the present results could be compared with experimental and 
theoretical data. This was done by calculating N u  with higher resolution two- 
dimensional models and extrapolating the values to  infinitely fine grid sizes (see 
Lipps & Somerville 1971). In  this procedure it was assumed that the three- 
dimensional values of Nu change by the same amount on extrapolation as those 
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FIGURE 11. Heat transfer Nu as a function of Ra. -, obtained from the data of Brown 
(1973); A, results from the analysis of Clever & Busse (1974), calculated for a roll wave- 
length of h = 2.86; 0, adjusted numerical values of Nu from the present study. The 
vertical dashed lines separate the three regimes of BBnard convection in air. 

determined from the two-dimensional calculations. This assumption seems 
plausible since the values of Nu in table 3 are nearly independent of the 
dimensionality of the convection. 

These adjusted values of Nu are indicated by the circles in figure 11.  The solid 
line represents the experimental data of Brown (1973). The average value 
obtained from runs A and B was used for the circle at Ra = 4000. The circles a t  
Ra = 6500, 9000 and 25 000 were obtained from runs Pi, D and E respectively. 
Finally, the circle at Ra = 15000 represents calculations from a run with the 
same grid dimensions N,, N, and N, as run D, horizontal aspect ratios s, = 4-18 
and s, = 3.71 and a total simulated time of T = 3.75. 

The triangles in this figure represent values of Nu calculated by Clever & Busse 
(1974) for a roll wavelength of h = 2.86. The value a t  Ra = 4000 was obtained by 
graphical interpolation; the other values of Nu were taken directly from table 1 
of their study. It is seen that their value and the present value of Nu are in 
excellent agreement at Ra = 4000. For the observed values of A, it  is well known 
that an increase in h at a fixed Ra gives a decrease in Nu (Lipps & Somerville 
1971). Thus, where the observed wavelengths are shorter than h = 2.86 at small 
Ra, the values of Nu calculated by Clever & Busse are smaller than the observed 
values. At large Ra, where the observed wavelengths are longer than h = 2.86, 
the calculated values of Nu are larger than the observed values. 

The circles in figure 11 indicate that the numerical values of Nu given for 
Ra = 9000, Ra = 15 000 and Ra = 25 000 fall within the region of uncertainty of 
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~ 

K Nu 

A 4 000 2.96 2.98 3.00 2.8 38.4 1.75 
B 4 000 2.48 2.50 2.52 2.8 45.5 1.88 
D 9 000 1-89 2.60 3-50 3.6 134.3 2.22 
D-2D 9 000 3.27 3.28 3.50 3.6 135.1 2.25 
E 25 000 1-34 1.99 2.76 4.0 482.3 2.94 
E-2D 25 000 3.14 3.10 3.90 4.0 503.4 2-89 

RUll Ra Sw Se A,, A,,, 

TABLE 3. Values of the length scales S, and So, the wavelengths A,,, and hex,, and K 
and Nu. Values of A,, were taken from Willis et al. (1972). 
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FIGURE 12. Vertical variations of (0), r(w8) and ( k )  for three Rayleigh numbers. 
. . . . . . . . , Ra = 4000; ------, Ra = 9000; __ , Ra = 25 000. 

the experimental data. However, the numerical values of N u  for Ra = 4000 and 
Ra = 6500 appear to be too large. One possible reason for this discrepancy is that 
the experimental convection is only quasi-two-dimensional a t  low Ra. This 
tendency is clearly seen in the photographs of Willis et al. (1972) for convection 
in air a t  Ra = 4000 and Ra = 6200. In  the numerical calculations at Ra = 4000 
the final steady states are strictly two-dimensional. In  run A the values of N u  
were lower by about 0.07 just before the flow started evolving towards the final 
roll pattern. With this reduction in Nu included, the circle a t  Ra = 4000 would 
be in much better agreement with the experimental data. 

6.3. The variation of horizontally averaged statistics with Ra 

In  figure 12 some horizontally averaged statistics of the convection are shown as 
functions of z for Ra = 4000, Ra = 9000 and Ra = 25 000. The variables plotted 
are the horizontally averaged temperature (0), the correlation of vertical 
velocity and temperature r(wO), and the horizontally averaged kinetic energy 
( k ) .  In  the present notation k(x  ,y, x ,  t )  represents the spatial and temporal distri- 
bution of kinetic energy and ( k )  is its horizontal average. The data for Ra = 4000 
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were obtained from the steady-state values at the end of run A .  The data for the 
larger values of Ra represent time averages as was discussed for table 3. 

The three curves for (0) in figure 12 show the typical formation of the iso- 
thermal temperature gradient near z = & as Ra is increased. There is no reverse 
temperature gradient for Ra = 9000 or Ra = 25 000. It is of interest to note that 
the two-dimensional runs D-2D and E-2D do give a reverse temperature 
gradient near z = &. Thus the three-dimensionality in the present calculations 
acts in some way to prevent the formation of the reverse temperature gradient. 

The data in figure 12 for r(w0) indicate that w and 0 are highly correlated for 
Ra = 4000. The value of r(w0) is almost exactly one at z = &. When three- 
dimensional motions develop, the values of r(w0) are reduced and the largest 
values are a t  the top of the boundary layers rather than at z = 4. These properties 
of r(w0) are consistent with the observed form of three-dimensional disturbances 
at Ra = 6500, which are discussed in appendix A. For Ra = 25000 a vertical 
asymmetry exists in r(w0). This vertical asymmetry and that of other data a t  
Ra = 25 000 are almost certainly due to lack of representativeness in the time 
averaging (only ten times were averaged) rather than to anything in the 
dynamics. 

The curves for ( k )  in figure 12 show that the magnitude of ( k )  increases 
rapidly as Ra is increased. Equally important, however, is the change in shape of 
the kinetic energy variation when three-dimensional motions are present. For 
Ra = 4000 the maxima in ( k )  at z = 0.22 and z = 0.78 are more than twice the 
magnitude of the minimum in ( k )  a t  z = &. When the convection is three- 
dimensional the two maxima in ( k )  are still present, but the relative variation 
of ( k )  in the central region of the fluid is much less. 

The present data clearly indicate that the change in the variation with height 
of r(w0) and ( k )  is due to three-dimensionality and not due to simply increasing 
the Rayleigh number. Data for r(w8) and ( k )  were obtained for runs D-2D and 
E-2D, where the flow was constrained to be two-dimensional. For r(w0) the two- 
dimensional values are larger and a single maximum occurs a t  z = &. For example, 
the E-2D results for Ra = 25000 give a maximum value for r(w0) of 0-96 at 
z = + and a vertical mean value of 0.90. For Ra = 9000 the D-2D results give a 
maximum value of 0.99 and a vertical mean value of 0.94. When the vertical 
variation of ( k )  for two-dimensional runs is considered, it is found that a t  both 
Ra = 9000 and Ra = 25 000 the maxima in ( k )  are more than double the mini- 
mum value a t  z = &. Thus the two-dimensional results from runs D-2D and 
E-2D appear to have more in common with run A at Ra = 4000 than with their 
three-dimensional counterparts, runs D and E.  

6.4. The kinetic energy balance 

If we take the scalar product of V with the momentum equation (3) and average 
over the horizontal domain, the following equation for the kinetic energy balance 
is obtained: 

a a 
- ( k )  = PrRa.(wO)--(w(k+p))-Pr 
at az 

a 2  
+Pr- (k )  (i = 1,2,3; j = 1,2,3).  (11) 

8.22 
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FIGURE 13. Vertical variation of terms in the horizontally averaged kinetic energy 

, production, equation for (a) Ra = 4000, (b) Ra = 9000 and ( c )  Ra = 25 000. - 
Pr Ra(w0); - - - - - -  , dissipation, - Pr ((au,/ax9) (au,/ax,)); ....... , molecular transfer, 
Pr aZ(kyaZ2; -.-.-.- , diffusion, - a(w(k +p))/az. 

This equation is equivalent to equation (15) of Deardorff & Willis (1967). 
Following their discussion the four terms on the right side of this equation will be 
denoted respectively by production, diffusion, dissipation and molecular transfer 
of kinetic energy. These four terms were calculated as functions of z for 
Ra = 4000, Ra = 9000 and Ra = 25000. The results at the two larger values of 
Ra represent time averages as for previous data. At Ra = 4000 the results were 
obtained from the end of run A. 

Figure 13 shows the kinetic energy balance for the three values of Ra. At 
Ra = 4000 the curves appear typical of low Rayleigh number convection with 
broad boundary layers and sinusoidal-type variations in the interior. For 
Ra = 9000 and Ra = 25 000 the curves have a flat appearance in the interior and 
the boundary layers are thinner. This is more characteristic of high Rayleigh 
number convection. 

The kinetic energy balance was examined by Deardorff & Willis (1967) at 
Ra = 6.3 x 105, Ra = 2.5 x 106 and Ra = 1-0 x 10'. The present curves a t  
Ra = 25 000 have broader boundary layers and the boundary-layer maxima are 
not as sharp, but in other respects the present data are very similar to their data 
for much larger values of Ra. This similarity includes the following features. 

(i) The production has a broad maximum in the interior of the fluid. 
(ii) The dissipation is strongly negative near the boundaries, has a minimum 

magnitude at the top of the boundary layers and is constant near x = i. 
(iii) The diffusion has a well-defined maximum in the boundary layers and 

approaches a negative constant value in the interior. When comparing the 
negative values of diffusion and dissipation in the interior, it  may be seen that the 
relative magnitude of the dissipation becomes larger as Ra ia increased. The same 
trend is seen in the data of Deardorff & Willis. 
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(iv) The curve of molecular transfer changes sign near the boundaries, has 
well-defined minima in the boundary layers and has two weak maxima just 
outside the boundary layers. 

7. Summary and conclusions 
Three-dimensional numerical solutions at Ra = 4000 produced steady two- 

dimensional convection with the roll wavelengths of A,,, = 3-00 in run A and 
hnum = 2.52 in run 23. These values are in good agreement with the experimental 
data. Willis et al. (1972) found the mean wavelength Aexp = 2.8. As indicated by 
Lipps & Somerville (1 971), initial-value calculations using a two-dimensional 
numerical model will predict roll wavelengths shorter than those observed in 
experiments. 

Finite amplitude travelling wave disturbances developed in run C a t  Ra = 6500 
with the wavelength A, = 2.0. The most unstable wavelength from the linear 
analysis of Clever & Busse (1974) is A, = 2.6. The present value of A, is strongly 
influenced by the choice of the horizontal aspect ratio s, = 4.00. The dynamics of 
the A, = 2.0 disturbances was examined in detail. When these disturbances were 
small amplitude standing waves, the period was r = 0.24. When they became 
finite amplitude travelling waves, the period was r = 0.27. The values of K,  Nu, 
{PK} and P changed relatively little owing to the presence of time-periodic 
disturbances. 

The numerical period r = 0-24 is in good agreement with the period r = 0.23 
obtained from Clever & Busse (1974). The finite amplitude period 7 = 0.27 com- 
pares reasonably well with the experimental period r 2: 0.32 found from Willis & 
Deardorff (1970). The variation of the numerical 7 as the disturbances reach 
finite amplitude is in good agreement with the conclusion of Busse & Whitehead 
(1974) that the period is proportional to the circulation time of the mean flow. 

In  appendix A the total flow at Ra = 6500 is separated into the mean flow 
(average taken along x) and the disturbance flow. Cross-sections are shown for 
the mean two-dimensional rolls (v, 8) and for the three-dimensional disturbance 
fields (V’, 19’). The energy balance between the mean flow kinetic energy x, the 
disturbance kinetic energy K’ and the available potential energy P is calculated. 
The transformations {PK’) and {EK’] are both positive, {PK‘] being nearly twice 
the magnitude of {&?K’]. 

When K’ is separated into the components Kh, Ki  and Kk the present analysis 
indicates that {PK‘} is the energy source maintaining Kh and Kh against dissipa- 
tion. The K i  kinetic energy is maintained against dissipation by the C, + C, com- 
ponent of the total { H K ’ }  transformation. The large amplitude v‘ oscillations 
near z = 4 are maintained owing to the vertical advection of V momentum by 
the w’ oscillations. The gradient &‘/ax provides the major contribution to the 
vertical component of the disturbance vorticity c’. According to the theories of 
Busse (1972) and Clever & Busse (1974), the oscillatory nature of the disturbances 
is associated with the existence of c’. 

The travelling wave disturbances a t  Ra = 9000 took on a more complex form. 
The weaker disturbances on the centre roll had the period r 21 0.24 whereas the 
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much larger disturbances on the outside roll had the period r N 0.45. New forms 
of disturbances appeared a t  Ra = 25 000. These were apparently similar to the 
breaking waves and isolated sharp-crested waves of short wavelength seen by 
Willis & Deardorff (1970). In  the present numerical solution at Ra = 25 000, the 
mean flow took the form of a semi-cross-roll pattern. The mean flow was not con- 
stant, but had a period given by r N 1.3. Disturbances superimposed upon the 
mean flow had a broad range of periods given approximately by 0.05 < r < 0-20. 

The short period fluctuations found a t  Ra = 9000 and Ra = 25000 are in 
reasonable agreement with experimental and theoretical data. The period 
r N 0.28 a t  Ra = 9000 is obtained from both Willis & Deardorff (1970) and 
Clever & Busse (1974). This value corresponds to the period r N 0.24 found in 
run D. The range 0.05 < r < 0.20 found in run E at Ra = 25 000 is in qualitative 
agreement with the experimental data shown in Krishnamurti (1973) and with 
the theoretical calculations of Clever & Busse (1974). 

The longer numerical periods, however, are not in agreement with either 
experimental or theoretical data. The periods r 21 0.45 for the large amplitude 
disturbances at Ru = 9000 and r 2: 1.3 for the mean flow at Ra = 25 000 may be 
strongly influenced by the finite horizontal domain and the periodic side 
boundary conditions. The periods of the longer period oscillations that do exist 
in air (Willis & Deardorff 1967) are much longer than the above periods. 

The long period fluctuations in air at low Ra may represent deviations 
of the flow patterns from strict two-dimensionality (Willis & Deardorff 
1970). In  the present calculations at Ra = 4000 the flow is strictly two- 
dimensional and the long period fluctuations do not exist. It is apparently the 
strict two-dimensionality in the mean flow at Ra = 4000 and Ra = 6500 that is 
responsible for the numerical values of Nu being slightly larger than the experi- 
mental ones (Brown 1973). The numerical values of Nu at Ra = 9000,15 000 and 
25 000 are in good agreement with the experimental values (see figure 11). 

In  § 6 several comparisons are made between two- and three-dimensional 
convection at Ra = 9000 and Ra = 25 000. The horizontal scales S, and So are 
much smaller when three-dimensional motions are present; however, the values 
of the kinetic energy K and the heat transfer Nu are relatively unchanged. No 
reverse mean temperature gradient exists at  x = 8 when the flow is three- 
dimensional whereas a reverse temperature gradient does exist for two- 
dimensional flow. Three-dimensionality decreases the magnitude of the correla- 
tion r(w0) and gives rise to a pair of maxima at the tops of the boundary layers 
instead of one maximum at z = 4. When the vertical variation of the kinetic 
energy (k) is considered, three-dimensionality significantly reduces the relative 
difference in magnitude between the maxima at the top of the boundary layers 
and the minimum at z = $. 

The kinetic energy balance is calculated for Ra = 4000, 9000 and 25000 in 
$6.4. The various quantities calculated as a function of z are the production, 
diffusion, dissipation and molecular transfer of kinetic energy. When the present 
data for the kinetic energy balance a t  Ra = 25 000 are compared with the data of 
Deardorff & Willis (1967) at much larger values of Ra, there is significant agree- 
ment. The same is also true when the variation with height of (@, r(w0) and (k) 
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a t  Ra = 25 000 is compared with their data. These results suggest that the most 
important dynamics associated with highly turbulent convection in air are 
already present at Ra = 25000. 

I wish to express my thanks to John B. Robinson, who gave invaluable aid in 
programming and analysis of the data. Richard C. J. Somerville and Gareth P. 
Williams read the manuscript and made many helpful suggestions. The author 
has also benefited from correspondence with Friedrich H. Busse. The calculations 
were carried out on a UNIVAC/llOS. The figures were drafted by Philip G. 
Tunison and staff, and the manuscript typed by Betty M. Williams. 

Appendix A. Detailed energetics and synoptics at Ra = 6500 

component. The mean is taken with respect to the x axis: 
The total flow field is separated into a mean component and a disturbance 

The mean flow (v, -8) takes the form of two-dimensional rolls while the disturbance 
flow (V’, 0’) represents the three-dimensional disturbances superimposed upon - 

the rolls. 
A I.  T h e  detailed energy equations 

The mean kinetic energy E and the disturbance energy 

The sum of E and K‘ is K ,  the total kinetic energy. Since 

K’ are defined by 

(A 3) 

(A 4) 

the available Dotential 
I 

energy P is defined according to ( 5 b ) ,  it is evident that P’ = 0, so that P = P. 
The equations for the time rates of change of R, K’ and P are 

d E / d t  = - {RK’} + {PR} - D, 

dK‘/dt = {HK‘) + {PK’} - D‘, 

dP/dt = - {PR) - { P K )  + PP, 

(A 5) 

(A 6) 

(A 7) 

where the transformations {PR}, {PK’} and {El?) are defined by 

{PK‘) = Pr Ra (w’O’)dz, 
101 
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where C,, . . . , C, are given by 

The transformations {PE} and {PK’} represent the mean and disturbance com- 
ponents of the total {PK} transformation. The {ZK‘} transformation represents 
the conversion of basic kinetic energy into disturbance kinetic energy. The dissi- 
pation rates B and D’ are as given in (6 d )  with the velocity components and V’ 
used in and D’ respectively. 

Equation (A 6) for the time rate of change of K’ can be separated into the three 
component equations 

where KL, K i ,  Kh and DL, Di, DL are the kinetic energies and dissipation rates 
associated with the velocity components u‘, v‘ and w‘ respectively. Note that the 
three pressure-work integrals must sum to zero since the disturbance’s 
divergence must vanish. 

A 2. Detailed energetics and $ow patterns at Ra = 6500 

The energy budgets for a, K‘ and P are indicated respectively by (A 5)-(A 7). 
At the end of run P1, the energetics with respect to the total K ,  P and {PK) were 
in a steady state, however there was still some transfer of energy from E to K‘ a t  
this time. The magnitude of this energy exchange was decreasing with time and 
an extrapolation procedure was used to estimate the steady-state energetics 
appropriate to (A 5)-(A 7). The magnitude of this extrapolation was never more 
than 2.5 yo. 

The energy balance for the extrapolated steady state is shown in figure 14. 
This three-box diagram indicates that K’ receives energy through both the 
{PK’} and the {EK’} transformations. The {PK‘} transformation is the larger, 
accounting for 62 % of the total conversion into K’ kinetic energy. The remaining 
38 % is accounted for by the {EK’} transformation. The values of the six terms 
C,, . . . , C,, which make up the total {RK} transformation, are given in table 4. 
The present energy balance has been calculated for A, = 2.0. As indicated in 
Q 4.1, the most unstable wavelength obtained from the linear theory of Clever & 
Busse (1974) is A, = 2.6. Although the detailed values shown in figure 14 will 
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PP=4780 

{PK}=4050 

{E,p}=450 

{PIC}= 730 

EI'= 23.9 

4= 3600 0'=1180 

FIGURE 14. Three-box energy diagram for Ra = 6500. These data are the extrapolated 
values obtained from run 3'1. The various transformations and the different forms of 
energy are discussed in §A 1. 

change with A,, it  is thought that the qualitative features of this figure will 
remain unchanged. 

The energetics can be better understood after an examination of the mean flow 
and the disturbance flow at the end of run Pi. The mean flow fields T i ,  3, W and -8 
are shown in figure 15. These patterns for V, W and 8 in the y, x plane indicate 
a typical two-dimensional roll structure. The U field has a maximum value of 0.6 
compared with maximum amplitudes of 18.7 and 12-9 for the V and ;iij velocities, 
respectively. Since the sum C, + C, is negative, implying very weak transforma- 
tion of disturbance kinetic energy into U kinetic energy, the U field is generated by 
the disturbances. Dynamically it is of negligible importance since i t  is very weak. 

The disturbance flow fields u, w', w' and 8' in the x, z plane are shown in 
figure 16. These cross-sections are for y = isy, so that they intersect the axis of 
the mean flow rolls a t  x = 4. Along this axis, where V and W = 0, the disturbance 
velocities w' and w' are a t  or near their maximum amplitudes. The disturbance 
flow patterns move from left to right without change of shape. Thus they have 
a positive phase velocity c,. 

The fields shown in figure 16 indicate that the 8' oscillations lead the w' oscilla- 
tions by about 54" at x = 4. Near the boundaries, where 8' is larger, the w' and 
8' oscillations are nearly in phase. These results give rise to the positive (PK') 
transformation. They also indicate that the correlation function r(w'8') should 
have a maximum value in the boundary layers and a minimum a t  z = $. This is 
the behaviour of the correlation r(w0) for the total w and 0 when the disturbances 
are of large amplitude a t  Ra = 9000 and Ra = 25 000 (see figure 12). 
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(4 
FIGURE 15. The mean flow in the y, z plane for Ra = 6500. These cross-sections are for the 
end of run 3'1. (a) U velocity. ( b )  ij velocity. ( c )  Ti5 velocity. (d )  8 temperature. The contour 
interval for the velocities is 7.5 and for the temperature is 0.15. Stippled areas are negative. 

u' V' WI Total 

Kinetic energy K: = 4-4 XL = 12.4 Ka = 7-1 K' = 23.9 
c,=-4 c, = -37 C, = - 163 K { P }  = 450 
c, = 2 C, = 581 C, = 71 

{m) 
{PK'} - - { P K }  = 730 { P K }  = 730 

DI = 365 0: = 542 DL = 273 D' = 1180 Dissipation 
Pressure-work PW, = 367 PW, = - 2  PW, = -365 Pwo, = 0 

TABLE 4. The detailed energetics associated with u', v' and w' at Ra = 6500. In each 
column the terms given correspond to the terms shown in (A l l ) ,  (A 12), (A 13) and (A 6) 
respectively. These values are for the asymptotic steady state. 

The disturbance flow in the y, x plane is shown in figure 17. These cross-sections 
are given for the value of x indicated by the arrow in figure 16. This value of x was 
chosen such that the fields of v' and w' would be near their maximum amplitudes. 
The field of u' is therefore not near its maximum amplitude; however, the basic 
variation of u' with y is revealed in this figure. A comparison of figures 15 and 17 
confirms that the maximum amplitudes of v' and w' are at or near the mean roll 
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( c) 
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z 

X m2 X 

(6) (4 
FIGURE 16. Fields of (a)  u', ( 6 )  v', ( c )  w' and (d )  8' in the x, z plane. These cross-sections are 
for y = 45,. Stippled areas are negative. The contour interval for the velocities is 3.75 and 
for the temperature is 0.04. 
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FIGURE 17. Fields of (a)  u', ( 6 )  v', ( c )  w' and (d)  8' in the y, z plane. These cross-sections are 
for the value of x indicated by the arrow in figure 16. Stippled areas are negative. Solid 
contours are the same as in figure 16. The broken lines in the u' cross-section represent 
1.875 contours. 
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axis. Figure 17 also shows that v' has one sign in y and a wavenumber n, = 2 
variation near z = 4. Near the boundaries, however, v' has a wavenumber n, = 1 
variation and does change sign. 

Detailed discussion of K'. The equations for the separate components KL, Ki 
and KL of the K kinetic energy are given by (A 11)-(A 13). The steady-state 
values of the terms in each of these equations are given in table 4. The pressure- 
work terms were not calculated directly, but were obtained from the sum of the 
other terms in each equation. The time derivatives of KL, Kk and Kk are assumed 
to vanish in the asymptotic steady state. 

The data in table 4 show that the {PK'} transformation is the positive energy 
source term for Kb. Since C, + C, = - 92, this component of the total {HK'} trans- 
formation represents a small energy sink. The excess net energy from this source 
not balanced by the dissipation DL is transferred into the Kh and KL energy 
components through the pressure-work term PK. The KL energy is the apparent 
recipient of this energy through the positive PW,. This pressure-work term almost 
exactly balances the dissipation D:,. In  the K; energy equation (A 12), the sum 
C, + C, is the source term, which almost exactly balances the dissipation Di. The 
importance of this source term is evident since Ki is greater than the sum of 
KA and KL. 

At the level x = 4 the v' oscillations have their largest amplitude along the mean 
roll axis, where both 8;i;la.z and w' have a large amplitude. Thus near this level, 
where the v' kinetic energy is largest, the primary source of energy is evidently 
associated with the vertical advection of ;Ei momentum by the w' oscillations. This 
positive energy source is represented by C,, which is the largest of the components 
of the {HK') transformation. The data shown in figures 15 and 17 indicate that 
as w' changes sign from one mean flow roll to the next, so also does the gradient 
aE/az, thus allowing v' to maintain one sign in y. This line of reasoning also 
explains the n, = 2 wavenumber variation in v' near z = *. 

The dynamics of the v' oscillations appears to be different near the boundaries. 
The n, = 1 wavenumber variation in v' shown in figure 17 is approximately 90" 
out of phase with w'. The correlation of au'lax and av'lay has been calculated as a 
function of z. This correlation has values close to 0.90 in the boundary layers and 
is near - 1.0 a t  x = 4. Thus near the boundaries &'/ax and av'lav are almost 
in phase and together supply the convergence required by continuity to maintain 
the w' oscillations. Since the energy source for KL is the {PK') transformation, 
it would appear that { P K }  is the indirect energy source for the boundary- 
layer v' oscillations. 

The final topic of discussion is the vertical component of the disturbance 
vorticity 6'. According to the theories of Busse (1972) and Clever & Busse (1974), 
the oscillatory behaviour of the disturbances is associated with 5'. In  the present 
calculations, the main contribution to 6' is through the gradient av'/ax. As seen 
in figures 16 and 17, this gradient has maximum amplitude near z = 4, so that 
g' is largest there also. The above discussion for the v' oscillations indicates that 
the primary energy source associated with 5' is the C, component of the total 
{HK'} transformation. 

10 F L M  75 
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Appendix B. A discussion of time and space truncation errors 
The primary topic of this appendix is the time truncation error associated with 

the DuFort-Frankel difference scheme. This scheme is used to represent the 
finite-difference forms of theviscous and diffusive terms in (3) and (4). If the limit 
Ax-tO is taken for the finite-difference equations, but the ratios AxlAx, AylAz 
and At/Az are held constant in this limit, then the resulting continuous equations 
will contain artificial second time derivatives (Richtmyer & Morton 1967, p. 177): 

av a a a 
-+-(uV)+-((vV)+-(wV) = -Vp+PrRaOk+Pr 
at ax a Y  ax 

where 

ae a a a a2e -+--(ue)+--(ve)+-(we) = we-p-  
at ax aY ax at2 ’ 

Thus, for finite values of 1, the finite-difference equations with the DuFort- 
Frankel scheme will represent approximate solutions to (B 1)  and (B 2) instead 
of (3) and (4). 

If V and 6’ have the time oscillatory behaviour represented by V, 6 N exp ( iwt ) ,  
then the right-hand sides of (B 1) and (B 2) will contain the terms Pr w2pV and 
w2p8, respectively, owing to the artificial second time derivatives. When the time 
oscillatory components of V and 6’ satisfy linear equations, it is evident that these 
terms represent an artificial amplification effect. For Pr = 1 and small P this 
amplification effect is approximately represented by the time variation exp (art) 
with a, given by c, = Pw2. In  the present calculations with Pr = 0.7 a similar 
type of amplification effect should be expected for linear disturbances. When the 
disturbances reach finite amplitude, i t  may be expected that the disturbance 
kinetic energy h” wiIl be increased owing to this artificial effect. 

The values of the grid intervals Ax, Ay, Ax and At and of the parameters P, 7 
and Pw2 are given in table 5 for runs A-F 1. For runs A and B the values of 7 were 
estimated from the observed time variation of individual cells which formed and 
decayed before the flow approached the asymptotic two-dimensional steady 
state. The values of r for runs C,  F and F 1  were obtained from the finite amplitude 
travelling wave disturbances. The values 7 = 0.24 and 7 = 0.45 for run D and the 
range of values 0.05 < 7 < 0.20 for run E were discussed in 3 5. 

The magnitude of Pw2 for runs A-Fl shown in table 5 gives some indication 
of the possible importance of the DuFort-Frankel time truncation error in the 
various runs. Pw2 has its largest magnitudes for the more rapidly moving disturb- 
ances in runs D and E. The dashed lines in figure 7 for Ra = 9000 and in figure 10 
for Ra = 25 000 show the effect of halving the time step in these plots of w and 
0 vs. time. It is seen that the amplitude of the disturbances is virtually unchanged 
by increasing the time resolution, but there is an apparent slight decrease in the 
period of the oscillations. These results suggest that the DuFort-Frankel error 
has minor importance for these runs. A comparison of the flow fields and the 
integrated statistics for the two different time resolutions indicates the same 
conclusion. 
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Run Ra Ax Ay A z x 1 0  Atx108  P x 1 0 3  7 Do2 
A 4 000 0.1364 0.1364 0.6250 2.40 2.09 -4.0 
B 4 0 0 0  0.1667 0.1667 0.7143 2.40 1.54 -1.7 
C 6 500 0.1429 0.1600 0.7143 1.20 0.409 0.28 
D 9 000 0.1111 0.1094 0.5556 0.90 0.396 0.24 

0.45 

0.20 
P 6 500 0.1000 0.1000 0.5000 0.80 0.384 0.27 
Pl  6 500 0.1000 0.1000 0.5000 0.40 0.096 0.27 

E 25000 0.0975 0'0975 0.5000 0.50 0.153 0.05- 

0.005 
0.021 
0.206 
0.271 
0.077 

0-151 
0.208 
0.052 

2.41- 

TABLE 5. Values of the grid intervals Ax, Ay, A$ and of P, 7 ,  Poz for runs A-Fl.  The 
frequency o is related to the period 7 by o = 27117. The quantity p is defined in (B 3). 

Run C Run P Run Pi 

K 89.46 86.88 86.70 
E 59.59 59.57 62.80 
K' 29.87 27.31 23.90 

TABLE 6. The values of K ,  E a n d  K for runs C ,  P and PI 

Detailed information concerning space and time truncation errors for runs 
C, F and F1 is given in table 6. The data for run C were obtained a t  the end of 
this run. The values of and K' given for runs F and F l  are the extrapolated 
values calculated a t  the ends of these runs. 

When these three runs are compared, it is seen that the values of pw2 are 
virtually identical for runs C and F.  Thus run P has a higher space resolution 
than run C but the same time resolution. Run F1 has the same space resolution 
as run F but double the time resolution. The data in table 6 indicate that K' is 
reduced by both higher space and higher time resolution. That K' is significantly 
increased owing to time truncation is an apparent result of the DuFort-Frankel 
time truncation error. 

The total kinetic energy K ,  however, is much less sensitive to space and time 
truncation errors. The decrease in K from run C to run F due to improved space 
resolution is 3 %. The decrease in K from run F to run Pl due to improved time 
resolution is negligible. Thus the essential effect of higher time resolution is to 
reduce K J  with a compensating increase in g .  The total decrease of K' from run C 
to run F l  is about 25 yo. The value of K is sensitive to numerical truncation errors 
apparently because Ru = 6500 is near the critical value of Ra for the onset of the 
present three-dimensional disturbances. 

10-2 
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